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Intuition



Definition
An elliptic curve is the set of pairs of ‘numbers’ (for an
appropriate definition of ‘numbers’, as we will describe) (x, y)

satisfying the equation:

v =x3+ax+b



Figure: The graph of the equation y? = x3 — 3x.



Figure: The first iteration of our process.




Figure: The first iteration of our process.




Figure: The first iteration of our process.




Figure: The first iteration of our process.
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Figure: The first iteration of our process.
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Figure: The second iteration of our process.



A Whirlwind Tour of Abstract Algebra



Definition

For the purposes of this talk, a set will be a collection of objects.
For more information, consider looking up the Wikipedia page for
ZFC (Zermelo - Frankel - Choice set theory, the foundations for
most modern math). An element of a set is one of the objects in
the set. The notation a € A means that the object a is in the set A.



Definition

Let A and B be sets. The union of A and B, denoted AU B, is the
set of all elements which are in A or in B (inclusive or). The
intersection of A and B, denoted AN B is the set of all elements
which are in A and in B. The difference A— B or A\ B is the set
of all elements in A which are not in B.

Definition
The Cartesian product of two sets A and B, written A x B, is the
set of all pairs (a, b) with a€ A and b € B.



Definition
An equivalence relation on a set S is a subset R of S x S
satisfying the following properties:
> Reflexivity: For every ain S, (a,a) is in R.
» Symmetry: If (a,b) in R, then (b, a) is in R.
» Transitivity: If (a,b) is in R and (b, c) is in R, then (b, a) is
in R.
We write a ~ b to indicate that (a, b) is in the set R.



Lemma

Let S be a set and ~ be an equivalence relation on S. Let |a]
denote the set of all b € S satisfying a ~ b. Every [a] is either
equal or disjoint to every other [b], and every element of S is in
some [a).



Definition
A group is a set G equipped with a binary operation, that is, a
function f : G x G — G. We'll often write the group operation
using infix notation using an operator like o; (a ® b), for example,
denotes f(a, b). This binary operation satisfies the following
properties:
> Associativity: ae (bec)=(aeb)ec.
> Identity: There is an element e of the set G such that for
each gintheset g, cog=geec=g.
» Inverses: For every g in the set G, there is an element g~ in
G satisfying gg ! =g lg=e.



Definition
A group is abelian or commutative if 2@ b = b e a for each
a,beG.

Definition
A subgroup H of a group G is a subset of G that satisfies the
group axioms for the same operation as G.

Definition

A cyclic subgroup generated by g for some g in a group G is
the set of all ‘powers’ of g, that is the set of all elements of the
form g-g-...or g7l - g1 ... together with the identity.



Example
The symmetries of a triangle are a group.

Example
The integers (under addition) form a group

Example
The integers modulo n form a group under addition.

Example
The integers modulo a prime p, if you take away 0, form a
group under multiplication.



Definition
A ring is a set R with two binary operations called multiplication
and addition, satisfying the following properties:

» Both operations are associative

> The set R is a group under multiplication with identity 0
» There is a multiplicative identity 1

» Multiplication distributes over addition; i.e., for every
a,b,ceR

a(b+c)=ab+ac and (b+c)a= ba+ ca

A ring is called commutative if ab = ba for all a and b in the ring.



Example
The integers are a ring.

Example
The integers mod n are a ring.

Example

Polynomials in n variables with real, integer, or complex
coefficients (actually, in any ring) form a ring under the
multiplication and addition formulas we're familiar with.



Definition
A field is a commutative ring F where the set F — {0} is a group
under the ring multiplication.



Example
The rational numbers Q, the set of ratios g for p, g integers, form
a field under the standard ‘fraction multiplication’.

Example
The real numbers R and the complex numbers Q are fields.

Example
The integers modulo a prime p are a field.



Definition

A vector space over a field k is an abelian group V together with
an operation -: k x V — V called scalar multiplication that is
distributive and satisfies 0- v = 0 (where 0 is the identity of the
group) and 1-v = v.

Example
The Cartesian product k x k X k... X k is a vector space under
componentwise addition and the scalar multiplication law:

x-(a1,a2,...,an) = (xa1, xaz, ..., xap)

We call this construction affine n-space over k



Zero Sets and Projective Space



Definition
Fix a field k. The zero set of a polynomial P(xi, ..., x,) is the set
of all (x1, ..., xn) in affine n-space such that P(xq, ..., x,) = 0.

Definition

Projective n-space over a field k is the set of equivalence classes
of the set k x k x .... x k —(0,...,0) (multiplied n+ 1 times) by
the equivalence relation a ~ b if and only if

(a1, s @nt1) = A(b1, ..., bpy1)



Definition

The degree of a term in a polynomial is the sum of the powers of
the indeterminate variables in that term. A homogeneous
polynomial in n variables is a polynomial who's terms all have the
same degree.

Lemma
The ‘zero’ of a homogeneous polynomial is a well defined notion in
projective space.



Putting it all Together



Take an elliptic curve defined by a polynomial equation
P(x,y) over a finite field k (for computability).

Pick a base point for our elliptic curve.

Embed this curve into projective space using the
homogeneous polynomials associated to P(x,y).

This yields a group!
Pick a private key (some integer n)

Now add the base point to itself n times - where n is your
private key. This yields your public key

Double and Add for speed!



Figure: The graph of the equation y? = x3 — 3x.



Computations with TinyEC



Some Python Code for You

#!/usr/bin/python

from tinyec import registry
import random

curve = registry.get_curve(’secp521rl’) # This is the largest prime field key
# recommended by the NSA as of
# recentlyish.
print ("There are", curve.field.h, "cyclic groups associated with this field.")
print("""The order of the cyclic group generated on this curve by this
base point is:,""", curve.field.n)
privKey = random.randint(0, curve.field.n) # random isn’t secure but it’s fine.
pubKey = privKey * curve.g # This is the beef - generate a public key from a
# private key!
print("My public key is:", pubKey)
print ("I check that my private key works, and obtain:", privKey * curve.g)
print("I can’t read that. Is it equal:", privKey * curve.g == pubKey)
print("My private key is (sshhh, don’t tell):", privKey)



Let's Time This

In [1]: from tinyec import registry

In [2]: import random

In [3]: curve = registry.get_curve(’secp521rl’)
In [4]: privKey = random.randint(0, curve.field.n)
In [5]: %timeit pubKey = privKey * curve.g

87.1 ms * 126 s per loop (mean * std. dev. of 7 runs, 10 loops each)



Plotting Elliptic Curves over Finite Fields

Let’s plot our equation y> = x> — 3x over a finite field (in our case, the integers modulo 257).

import numpy
import matplotlib.pyplot as plt

p = 2567 # To irritate the programmers
grid = numpy.zeros((p, p))
for i in range(0, p):
for j in range(0, p):
if (i%#2)%p == (j**3-3%j)%p:
gridl[il[j] =1

for j in range(0, p//2):

grid[p, jl =1
plt.imshow(grid, interpolation="nearest")
plt.show()
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